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Abstract

In this work, we will identify important variables that contribute to

vehicular movement in an emergency environment. In particular, we for-

mulate and pose the Convoy Routing Problem (using far fewer variables

than other important models without sacrificing too much in the way of

solution accuracy). We suggest a method for modeling the problem and

formulate a precise problem statement. The difficulty of the proposed

problem is examined, practical parameters are gathered via extensive lit-

erature search, and an algorithm using artificial intelligence techniques for

its solution is presented and empirically analyzed via software simulation.
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1 Introduction

The aftermath of hurricanes Katrina and Rita and the poor response of the

governmental emergency services highlight the need for a more efficient and

capable post-disaster asset-movement system. A timely and seamless movement

of goods (especially consumable and perishable material) and people is difficult

during normal circumstances in any large urban area with complex gridlines and

a large transportation network. The complexity is magnified when a disaster

eliminates some of the routes and/or destroys some of the storage locations. It

is, however, exactly in such circumstances when a robust and adaptive plan of

transportation is vital in support of the general population.

A solution for the movement of goods that relies on a relatively static con-

dition of roads and services cannot simply be adopted during and immediately

after a disaster; the chaotic movement of precious commodities such as ice after

Katrina, for example, was clearly unacceptable. An excerpt from a 2005 article

by Matt Ryan (Ryan, 2005) illustrates the basic point.

“Federally funded disaster relief is not used efficiently because offi-

cials don’t face the same discipline that people face in private mar-

kets. The journey of an ice truck providing Katrina relief illustrates

FEMA’s inability to coordinate and its blindness to cost effective-

ness. After leaving Wisconsin and arriving in Louisiana, the truck

was sent to Georgia but then re-routed to South Carolina. After

ending up in Maryland, the truck’s ice sat stationary for days, while

costing taxpayers money and leaving those in need of relief with

fewer supplies.”

Clearly, an adaptive/intelligent agent is necessary to manage and direct the

movement of goods as the operating environment evolves. When developing

a goods distribution system, as Ryan notes above, it is desirable to design a

system that is not only able to obtain reasonable solutions for given set of

circumstances, but it is also able to adapt its solutions rapidly to unforeseen
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roadblocks (and potentially take advantage of fortuitous occurrences as they

happen).

Commonly, systems that address the goods distribution problem come in

the form of models that, given inputs that might consist of a goods manifest

and a database of road maps, produce a schedule for distribution. Such models

are allowed to search for hours or even days for the optimal solution. Of course,

in the face of an immediate and catastrophic emergency, the search for optimal

solutions takes too long to compute and implement; a perfect solution, though

desirable during normal circumstances, is not possible to obtain in real-time

given the fluid nature of a post-catastrophic environment.

The technologies for collecting data on road conditions and goods move-

ment have improved significantly over the past several years. It is now possible

to access the velocity of most sections of the major freeways and highways in

southern California via the Internet (Technologies, n.d.). Many trucking compa-

nies now carry GPS navigation systems and/or electronic tracking devices that

allow their central handling agencies to have almost instantaneous knowledge

of the positions of the entire fleet at once. Police helicopters are now available

in every major population center. A single human being (or, sometimes, even a

highly qualified team, as Katrina showed) is no longer able to process all that

information at once. The data is available; what is now needed is a system for

collecting, organizing, and processing it in a real-time adaptive way.

Our first goal in Section 1.1 will be to identify the variables that contribute to

a realistic model of post-disaster traffic flow via comparison with previous work.

In Section 2, we will then use this information to derive a mathematical problem

that can be analyzed using the tools of theoretical computer science. We make

a few remarks about the problem formulation and then delve into analysis of

the limiting behavior of the problem itself in Section 2.2. We will show that

the problem is most likely intractable (Section 2.3). In Section 3, we discuss

realistic parameters for the problem. Finally, we suggest various methods for

finding approximate solutions to the problem in spite of its intractability using

certain forms of artificial intelligence in Section 4.
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1.1 Previous Work

There is a substantial body of work on traffic models. See (Klar & Wegener,

1997a; Klar & Wegener, 1997b; Klar et al. , 1996; Ioannou & Chassiakos, 2001;

Chardaire et al. , 2005) for a small sampling. In Ioannou and Chassiakos (Ioan-

nou & Chassiakos, 2001), the authors have essentially performed the same type

of analysis that we intend to do for the specific case of traffic flow as pertains

specifically to trucks at the Long Beach ports; in a recent paper by Chardaire

et al. (Chardaire et al. , 2005), the authors introduce and analyze a problem

very similar to ours. This section will be a short comparison of our work with

theirs and a justification of our assumptions: Section 1.1.1 illustrates how we

are able to sacrifice a certain amount of accuracy in the model in exchange for

a potential speed-up in data collection and processing, and Section 1.1.2 is a

short discussion of complexity issues and the interaction effect between entities

in the model.

1.1.1 Model Simplification

One of the primary objectives of this work is to put together a realistic mathe-

matical model of traffic flow in such a way that the parameters of the problem

are easily gleaned from the surrounding environment. In the first section of

Ioannou and Chassiakos (Ioannou & Chassiakos, 2001), the authors determined

several variables that substantially contribute to their model. Their model for

the behavior of the trucks consists of two parts, a longitudinal and lateral truck

model. The longitudinal model alone contains seven different types of forces,

and determining the motion of a single truck requires solving a first order linear

differential equation (probably numerically).

In an emergency environment, when it comes to movement of supplies and

people, solution speed is far more critical a parameter than finding the optimal

solution. In most cases, a fair approximation to the optimal solution (even to

within relatively large constant factors) quickly is far preferable to a perfect

but late solution. Additionally, in an evolving environment, the parameters of
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the problem may (and most likely will) change at a moment’s notice. Thus,

in our mathematical model, we sacrifice several variables that contribute to the

accuracy of the model so that we can reasonably guarantee that the data relevant

to the problem can be collected and processed efficiently. In particular, we do

away with the standard notion of vehicles (cars, trucks, etc.) and group these

into “convoys.” In an emergency situation, it is realistic to assume that unless

lives are clearly and immediately threatened, people will organize themselves

into groups that they trust to travel together, thereby maximizing everyone’s

safety. In fact, the military, an outfit that for the most part always functions in

an evolving emergency environment, regularly uses convoys to move vital assets

from place to place. Chardaire et al. (Chardaire et al. , 2005) use this same

simplification in their problem statement as well. To illustrate the importance of

the problem to the military, Chardaire et al. (Chardaire et al. , 2005) note that

an enormous amount of time and resources was spent planning the movements

of convoys during the intervention in Kosovo in the late 1990’s (Cummings,

1999; Chardaire et al. , 2001).

1.1.2 Interactions and Complexity

In the second section of Ioannou and Chassiakos (Ioannou & Chassiakos, 2001),

the authors essentially use a modification of Dijktra’s single-source shortest path

algorithm (Dijkstra, 1959) to come up with an adaptive algorithm for vehicular

re-routing. In this section, the complex model that they come up with in the first

section of their paper is used to determine the weights on the edges of a digraph.

Dijkstra’s algorithm is then basically used for each vehicle on this digraph to

determine the shortest distance to the terminal point. If their algorithm is run

on each vehicle in the digraph, assuming there are n total edges and m total

vehicles, the running time of their algorithm is O(n3m) in the worst case. A

quick overview of their analysis shows that if the edge weights change fairly

often, as they would in an evolving environment, this worst case running time

is the most likely running time. There are two points to note.
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• Generally speaking, a cubic dependency on a relatively large parameter is

not sufficient for a real-time analysis.

• Interestingly, though the authors have thoroughly studied the movement

of an individual truck on a roadway, interactions between vehicles are

entirely ignored.

We deal with the first issue by drastically reducing1 the size of the parameter

m and replacing the edge weights with static values. Though this simplification

reduces the quality of our model, we believe that the philosophy of reasonably

trading accuracy for swiftness applies in this case. We will see later on, however,

that this “simplification” does not make the problem trivial. On the contrary,

the problem we set up will prove to be most likely intractable and will have to be

dealt with using artificial intelligence approximation techniques. As opposed to

the solution in (Ioannou & Chassiakos, 2001), these techniques have the benefit

that, once a feasible solution is decided upon, the algorithm can be terminated

as soon as a “good enough” solution has been found; the longer the algorithm

is run, the better the solution. Again, Chardaire et al. (Chardaire et al. , 2005)

make assumptions similar to ours, grouping vehicles into convoys; however, their

model is substantially different, and we wait until the formal introduction of the

problem to differentiate.

The second point is more disturbing. Anyone who has driven a vehicle in

Los Angeles knows that the presence of one or more additional drivers on the

roadway is an extremely significant variable. Such an interaction is certainly

multiplied when it comes to convoys of vehicles traveling together. One should

assume that two convoys traveling on the same roadway in the same direction

will interfere with one another and slow each other down; convoys that have to

cross each other at intersections will also cause serious disruptions. Seemingly

significant interactions of this kind are included in our model.

1Recall from Section 1.1.1 that we organize our vehicles into convoys, each convoy being a

single large entity.
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2 Formulating the Problem

In this section, we will formulate the Convoy Routing Problem (CRP) rigor-

ously2. First, we define what it means to be a “convoy” mathematically.

Definition 1 Assume that a weighted digraph3 G = (V, E) is given, along with

a straight-line embedding into the 2-dimensional plane R2 in such a way that

any two distinct directed line segments that are not of the form {(a, b), (b, a)}

either intersect in one point or not at all4. (The weights on the edges need not

necessarily have anything to do with the position of the vertices in the plane.)

A convoy at any given point in time is defined to be an ordered sequence of

points within the digraph (a, v1, v2, . . . , vc, b). (Note that we allow c = 0. We

think of a as the rear of the convoy and b as the front.) We must have that

vi ∈ V for every valid i. However, the points a and b are not required to be

vertices of the digraph; they are required to lie along directed edges in E. More

rigorously, ∃(vi, vj) ∈ E such that a ∈ {(1 − t)vi + tvj |t ∈ [0, 1]} and similarly

for b, where the linear combination of two points refers to the linear combination

of their respective embedding coordinates in R2.

We now define what it means for two convoys to “overlap.” There are

two possibilities for convoy overlap. Two distinct convoys can either (a) be

simultaneously proceeding along the same directed edge in such a way that

the directed intervals described by the convoys in Definition 1 have nonempty

intersection or (b) be crossing at a given vertex.

2The Convoy Movement Problem (CMP) was introduced in (Chardaire et al. , 2005). These

two problems are significantly different as we note below.
3In most cases, it will be possible to assume that this digraph is planar. However, to keep

the model as general as possible and to account for the possibility of bridges and tunnels, we

allow nonplanarity.
4There are numerous algorithms for straight-line embeddings of planar graphs. We cite

two here for reference purposes: (Harel & Sardas, 1995; Chrobak & Payne, 1995). To embed

a general graph with these restrictions is trivial: Simply place all the vertices of the graph

equidistant on the diameter of a circle.
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Definition 2 Two convoys A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bm) cross

at a vertex v if and only if the following hold:

1. ∃i, j such that 1 < i < n, 1 < j < m, and ai = bj = v.

2. The pair of equations ai+1t + ai−1(1 − t) = bj+1s + bj−1(1 − s) has a

solution such that 0 < s, t < 1. (Note that the a’s and b’s are points in the

two-dimensional plane; therefore, this one equation is actually shorthand

for two distinct equations.)

The first part of the definition ensures that an intersection does in fact take

place, and the second guarantees that the paths do in fact cross.

Definition 3 Let two convoys A and B be given as in Definition 1, and fix a

particular point in time t. We define the vertex overlap (which depends on the

time t) to be the number of times that A and B cross as in Definition 2.

Note that Definition 3 allows two or more convoys to leave from a single

vertex or arrive at a single vertex without any associated cost. Also, and more

importantly, if two convoys meet at an intersection but do not actually cross

paths, we assume that there is no interaction that need occur between the two.

This is a simplifying assumption that takes away from the accuracy of the model

but not crucially.

Definition 4 Let two convoys be given as in Definition 1, and fix a particular

point in time t. We define the edge overlap (which depends on the time t)

between the two convoys to be the sum of the weights of the intersecting edges

and edge pieces of the two convoys.

More specifically, consider the intersection of two convoys within the weighted

planar digraph G. Note that by Definition 1, we can separate the intersection

into disjoint pieces (x, y) such that ∃(vi, vj) ∈ E such that x = (1− tx)vi + txvj

and y = (1− ty)vi + tyvj for some tx ≤ ty ∈ [0, 1]. Let the weight of edge (vi, vj)

be w(vi,vj). Then the contribution of (x, y) to the sum is (ty − tx)w(vi,vj).
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Note that Definition 4 simply codifies that the overlap between two convoys

traveling parallel to each other is equal to the sum of the overlap distance

where distance is defined not in terms of the distance between the points in the

embedding of the digraph G in the plane but rather in terms of the weights on

the edges. Note that the t’s in the definition correspond to the percentage of

the edge in question that the convoys have both traveled over. We then take a

weighted sum of these traversals to get the final result.

We are now in a position to define the main problem of the paper.

Definition 5 The Convoy Routing Problem (CRP). A problem instance is given

as follows:

1. Let C1, C2 ≥ 0 be known constants.

2. Let n ≥ 1 be the number of convoys to be routed.

3. Let G = (V, E) be a weighted planar digraph, and let (vs
1, v

s
2, . . . , v

s
n)

(the “start” vertices) and (vf
1 , v

f
2 , . . . , vf

n) (the “finish” vertices) be two

sequences of distinguished vertices such that for all valid i, d(vs
i , v

f
i ) < ∞.

4. Let (x1, x2, x3, . . . , xn) be a sequence of positive rational numbers, repre-

senting convoy lengths traveling at speed 1.

A solution to this problem comes as a sequence of “routing instructions” for

each 1 ≤ i ≤ n. A “convoy” is represented by a directed interval within the

digraph as described in Definition 1. More specifically, a solution to the problem

consists of, for each valid i,

1. A sequence of n nonnegative rational numbers (t1, t2, t2, . . . , tn), “start

times,” such that min1≤i≤n ti = 0.

2. For each 1 ≤ i ≤ n, a directed path within G represented as a sequence of

vertices

(vi,1, vi,2, vi,3, . . . , vi,mi
)

such that ∀1 ≤ i ≤ n, vi,1 = vs
i and vi,mi

= v
f
i .
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3. For each 1 ≤ i ≤ n, a sequence of positive rational numbers

(si,1, si,2, si,3, . . . , si,mi−1)

that represent convoy speeds. We must have, for every valid i and j,

si,j ≤ 1. (In other words, 1 is the universal speed limit that we allow in

our digraph.)

For each 1 ≤ i ≤ n, at time ti, convoy i is released from vs
i = vi,1. When

the front or rear of convoy i reaches vi,j , it changes its speed to si,j. The speed

of the endpoints (front or rear) of the convoy is used as follows: Assume that

an endpoint of convoy i is at (1 − T )vi + Tvj for some (vi, vj) ∈ E and some

T ∈ [0, 1] with speed s, and let the weight of edge (vi, vj) be w(vi,vj). At time

T ∗ > T , there are two cases to consider:

1. If (T + s
w(vi,vj)

(T ∗ − T )) ≤ 1, then the endpoint of the convoy will have

moved s(T ∗ − T ) units towards vj. The new position of the endpoint is

(1 − T +
s

w(vi,vj)
(T − T ∗))vi + (T +

s

w(vi,vj)
(T ∗ − T ))vj

2. Otherwise, the endpoint has reached vertex vj within the time interval

[T, T ∗] and changes speeds accordingly.

Note that the number of edges that the convoy occupies may increase or decrease

as time progresses.

Consider two distinct convoys A and B. Let fA,B(t) be the amount of edge

overlap in the convoys A and B within the digraph at time t as defined in

Definition 4. At time t, let gA,B(t) equal the vertex overlap between A and B as

defined in Definition 3. Let T be the time at which the graph G is first empty

of convoys. The goal is minimize the cost quantity

T +
∑

all convoy pairs A 6=B

∫ T

0

[C1fA,B(t) + C2gA,B(t)]dt

Note that we have defined the problem as an optimization problem. We can

easily reformulate the problem into numerous other domains. For the equivalent
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decision problem, we can simply introduce a parameter k and ask whether the

final cost quantity can be made less than or equal to k. If we wish to make

the problem online, we can specify that certain parameters are made known to

the user at particular times during the execution. For example, the number n

might increase as time goes on, i.e. convoys may wish to form and leave with

no prior warning. The edge weights of the digraph G may change during the

execution of the algorithm, and so on.

Each formulation will serve its own function. The optimization problem is

the standard presentation that most people are familiar with. The decision

problem will serve to prove rigorously in Section 2.3 that the problem presented

is not only challenging, but most likely intractable. The online variation of the

problem is the most realistic formulation, where the user is informed of the

changing parameters of the problem as time progresses.

2.1 Model Comparison with Chardaire, McKeown, Verity-

Harrison, and Richardson

In this section, we will compare our formulation of the CRP with the other main

convoy model, the CMP formulated rigorously in Chardaire et al. (Chardaire

et al. , 2005). (In this paper, Chardaire et al. describe their model as a “slightly

modified version of the specifications given in Lee et al. (Lee et al. , 1996).”) In

(Chardaire et al. , 2005), the problem is phrased as a constrained optimization

problem. We found several essential differences between our model and theirs;

we list most of these differences below. Which model best encapsulates the

situations encountered in practice/on the battlefield is a question that is best

answered by those with practical/battlefield experience. (Chardaire et al. use

the notation u to represent a convoy iterator; where possible, we try to mimic

their notation as long as it does not conflict with our own notation introduced

above.)

• Chardaire et al. introduce the parameters bu which are meant to represent

the earliest time at which convoy u can begin its movement. In our model,
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bu = 0 for every u.

• Chardaire et al. introduce the parameters fu which are meant to represent

the latest time at which convoy u is allowed to move in G. In our model,

fu = ∞ for every u.

• Chardaire et al. introduce the parameters gu which are meant to represent

the “waiting interval” of convoy u. In other words, if convoy u does not

begin traveling at time exactly bu, then it must wait for a constant multiple

of gu time units before it is allowed to begin moving. In our model, gu = 0

for every u.

• Chardaire et al. use integer units for times, time intervals, and cost mea-

surements. This makes for a final model in which the methods of integer

programming might be applied. Our model is allowed to use weights with

values in Q+.

• Though Chardaire et al. assume that the time it takes for the head of

convoy u to pass through an edge of G may vary depending on the cost

of the edge, the tail of each convoy will always take constant time wu

(independent of the edge cost) in order to reach a vertex after the head

does. Our model makes the assumption that the heads and tails of convoys

travel at the same rate: both head and tail of the convoy have travel time

between vertices dependent on both the speed of travel and edge weights.

However, convoys may have different lengths xi.

• Chardaire et al. assume that the weights of the edges might be different

for each convoy. Each convoy u has its own separate cost function for

the weights, namely Cu : E → Z+. Our edge weights are assumed to be

constant for every convoy.

• Chardaire et al. assume that convoys are able to “block” other convoys

from entering a vertex. In fact, once the head of convoy u enters a vertex

in the graph G, no other convoy may touch the vertex for another wu
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time units. (Recall that wu is the time that it takes for the rear of the

convoy to reach the vertex.) Our model assumes that two convoys may

utilize the same vertex, but that two convoys may cross paths only at

some predetermined cost.

• Chardaire et al. assume that convoys may not pass each other moving in

opposite directions along edges. We assume that all edges are directed;

therefore convoys do not interact with each other if they move in opposite

directions between two vertices because they will not be traveling along

the same edge.

There are other differences between the two models, and this is by no means an

exhaustive list. Though our model requires far fewer specifications, it will turn

out that the computational complexity of the decision problem derived from

two models are, perhaps surprisingly, the same.

Note that it is easily possible to make our problem more complex or simple by

adjusting the problem statement. We have chosen a formulation that attempts

to balance realism with simplicity. Our model has far fewer parameters than

does Chardaire et al., our cost function is much simpler to state and evaluate,

and we do not require a constrained optimization; however, it is possible to

make the argument that Chardaire et al.’s model is more general than ours in

certain ways.

One final note about the problem statement: We have chosen to use a uni-

form maximum speed limit on the roadways, namely 1. As everyone knows, this

is not a realistic assumption, and, in addition, the maximum speed on the vari-

ous roadways may change due to changing weather conditions or other problems

that arise. We claim that this uniform choice can be made without any loss of

generality in the model by allowing variations in the roadway weights. Assume

that the maximum speed limit on a given stretch of roadway with edge weight

w is M 6= 1. (Obviously, it is also true that M 6= 0 or the edge could not exist at

all.) We can simply adjust the weight on the edge of that roadway by a factor

of 1
M

to 1
M

w. Note that the time necessary to traverse the roadway of length
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w at speed M is w
M

, and the time necessary to traverse the roadway of length

1
M

w at speed 1 is
1

M
w

1 = w
M

.

2.2 Limiting Behavior

In this section, we will examine the behavior of the optimization problem given

in Definition 5 as the parameters C1 and C2 approach their limits.

First, note the limiting behavior of the problem as C1, C2 → 0 and as

C1, C2 → ∞.

• As C1, C2 → 0, the emphasis on the “overlap” approaches 0. Thus, we

care less and less about convoy overlap and more on the quickest route

from start to finish. In the case where C1 = C2 = 0, the optimal solution is

trivial: Using a shortest path algorithm (Dijkstra’s single-source shortest

path algorithm (Dijkstra, 1959), for example), find the shortest path from

vs
i to v

f
i for each valid i. Let every convoy move along this path at the

maximum speed and this optimally solves the problem. This seems to be

the case of “maximum emergency”: if people do not leave the scene of the

emergency as quickly as possible, lives will be lost simply via the delay

(e.g. the Chernobyl disaster, Three Mile Island, etc.)

• As C1, C2 → ∞, we care less and less about the time needed to get to the

destination and more about potential inter-convoy accidents. In this case,

there is no real emergency to leave, but it is still the goal to get everyone

away from the area eventually (e.g. voluntary evacuations from heavy

storm areas, etc.). In the limit, this reduces to the problem of finding

disjoint paths in the directed graph G (and this will figure heavily into

our proof in Section 2.3).

• If C1 → ∞ and C2 remains finite, then the problem reduces to whether

there exists an optimal schedule in which no convoy ever shares roadway

with any other convoy. If C2 → ∞ while C1 remains finite, then the

problems reduces to whether there exists an optimal schedule in which no
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convoy need ever cross paths with any other. Clearly, in both of these

cases, there exists a schedule in which no convoy ever need interact with

any other convoy: Simply route one convoy after another to its destination

and only start the next convoy once the first convoy has completely reached

its destination. (Below, in Section 4.3, we will refer to this as Algorithm

Obvious.) However, determining an optimal solution that minimizes the

time necessary is a highly nontrivial problem. Obviously, it may not be

necessary to wait until the first convoy has reached its destination before

starting the second; there may be ways of routing convoys so that no

interaction is necessary. This however is an extremely difficult problem,

and because the only methods known for solving it as of this writing are

the same as those for the more general problem, we only focus on the more

general problem.

Ordinarily, C1 and C2 will be reasonably large positive values, reflecting both

the urgency of the evacuation and the necessity of separating the convoys so

as to avoid collisions and accidents. For example, during the Katrina disaster,

where C1 and C2 would seem to take such a reasonable “middle” value, if the

government had set up organized convoy rescue teams to get the people out and

away from the affected area, it is possible that the unfortunate incidents that

occurred might have been avoided.

2.3 The Complexity of CRP

In this section, we will exhibit strong evidence that there does not exist an ef-

ficient solution to the decision problem version of optimization problem CRP

presented in Definition 5. This will be equally strong evidence that all other

versions of the problem we mentioned are intractable as well. Recall that the

associated decision problem is the simple modification of the optimization ver-

sion that chooses in advance a parameter k in addition to the other parameters

specified in Definition 5 and asks the question: “Does there exist a schedule

with cost less than or equal to k?”
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Theorem 1 The decision version of CRP (henceforward, DCRP) is NP-complete.

This set of NP-complete problems is interesting because it has been shown

that if a single one of these problems is solvable in polynomial time, then all are;

however, if it can be shown that a single one of these problems is intractable,

then all others must be intractable as well (Cormen et al. , 1990). It is currently

thought by most theoretical computer science researchers that NP-complete

problems are intractable though, to date, there has been no proof of this fact. In

the over forty years that researchers have been searching, not a single polynomial

time solution has been found for a single one of these problems nor has a single

intractability proof been presented.

In order to prove Theorem 1, we will require two separate lemmas, Lemma

1 and Lemma 2. The result will be immediate from these two via the principle

of language reduction (Garey & Johnson, 1979).

Lemma 1 DCRP ∈ NP

Proof : Assume that a value of k, a valid DCRP problem instance, and a

schedule are given. The goal is to verify that the given schedule does in fact

evaluate to a cost less than or equal to the given value k in time polynomial in

the problem size. The nontrivial part of this proof arises when we consider that

the cost function involves an integral. Recall that the cost of a schedule is

T +
∑

all convoys A 6=B

∫ T

0

[C1fA,B(t) + C2gA,B(t)]dt

from Definition 5.

The value T can clearly be determined from the schedule in polynomial time.

If we can show that for a single pair of distinct convoys A and B, the value of∫ T

0
[C1fA,B(t)+C2gA,B(t)]dt can be computed in polynomial time from the given

schedule, then the result will follow.

Consider any two distinct convoys A and B. Note that the functions fA,B(t)

and gA,B(t) are piecewise linear, and once an intersection is detected, deter-

mining the slope of the linear curve is easy. We therefore only really need to
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determine, for these two convoys, at what times they intersect and in what

way (i.e. vertex or edge intersection). It may not be immediately obvious that

this is a polynomial time process because time proceeds in a continuous way.

The problem therefore reduces to the problem of determining all intersections

between convoys during all time up until T .

Because the graph is planar and there are numerous line segment intersec-

tion algorithms from computational geometry that function in polynomial time

(e.g. Chazelle and Edelsbrunner’s optimal algorithm (Chazelle & Edelsbrunner,

1992)), we can determine exactly where and how the convoys intersect at any

specific point in time. The question is to determine which points in time should

these intersection algorithms be run.

Happily, we can restrict ourselves to the following events : Either the front

of one of the convoys reaches a new vertex or the rear of one of the convoys

reaches a new vertex. Between any one of these events, intersections may occur.

It is very easy to determine whether the trajectories of two points traveling

at constant speed intersect; note that between these events all relevant points,

namely the front and rear of both convoys, are traveling at constant speeds.

Thus, the times of each intersection can be detected in polynomial time, and

we add each of these intersections to the event list.

Once we determine the times of each relevant event, we order the events in

order of increasing time. We can then create the functions fA,B(t) and gA,B(t)

in polynomial time easily by noting that each is piecewise linear between the

given ordered events. 2

Definition 6 The Directed Disjoint Paths (DDP) problem is defined as follows.

We are given a directed graph G and k pairs of nodes (s1, t1), (s2, t2), . . . , (sk, tk).

The problem is to decide whether there exist vertex disjoint paths π1, π2, . . . , πk

so that πi goes from si to ti.

The DDP was shown to be NP-complete in Karp’s seminal paper (Karp,

1975). Schrijver notes in (Schrijver, 1998) that the planar version of this problem

was also shown to be NP-complete in the 1975 paper by Lynch (Lynch, 1975).
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Figure 1: The transformation that occurs for each vertex v ∈ V to form the

new graph G′ from G.

We will refer to the planar version of the DDP as PDDP. It may be interesting

for the reader to note that if the value of k in the PDDP is considered fixed

(i.e. is not a parameter of the problem itself), then the problem is theoretically

solvable in polynomial time (Robertson & Seymour, 1995). This implies that

there is hope for the DCRP if we assume that the number n is not a parameter

of the algorithm but is rather specified in advance. For example, if we limit the

number of convoys that our algorithm will ever be required to route to 20, then

there is hope that a polynomial-time algorithm may exist.

Though Chardaire et al. in (Chardaire et al. , 2005) also used the DDP in

their paper to prove the NP-completeness of their decision problem, their proof

was somewhat simpler due to the restrictions that their values were only allowed

to be integral and they were allowed to specify finite values for fu, the time by

which convoy u was required to have reached its termination point.

Lemma 2 PDDP ≤ DCRP

Proof : Assume that one is given an instance of PDDP, a directed planar

graph G = (V, E) and k pairs of nodes (s1, t1), (s2, t2), . . . , (sk, tk). We trans-

form this into a DCRP problem via the following. Note that because all paths

are vertex disjoint, we know that there cannot exist i 6= j such that ti = tj . In

other words, all path must have distinct destinations. Otherwise, we can easily

eliminate this trivial case in polynomial time.

For each vertex v ∈ V , we transform v into v1 → v2 such that all inputs to

v head into v1 and all outputs from v head outwards from v2. This will form a
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new graph G′ = (V ′, E′) from G. See Figure 2.3.

We can create the following instance of the DCRP. Let G′ as created above

be the digraph under consideration. Let C1 = 3|V ′| + 1, C2 = 0, and n = k

(where k represents the parameter in the PDDP). Let the weight of each edge of

G′ be 1. For each 1 ≤ i ≤ n, we let vs
i be the terminal vertex (i.e. v2 in Figure

2.3) of the transformed vertex for si and we let v
f
i be the initial vertex (i.e. v1

in Figure 2.3) of the transformed vertex for ti. Finally, for each 1 ≤ i ≤ n, let

xi = 2|V ′| and let the decision problem ask: “Does there exist a schedule with

cost less than or equal to 3|V ′|?” We claim that the answer to this question is

YES if and only if the corresponding PDDP question is YES as well. Note that

the construction is clearly polynomial-time.

First, assume that the answer to the PDDP question is YES. Then we can

route every convoy along its own disjoint path at maximum speed 1. The

arrival time of the rear of convoy i is equal to the path length from vs
i to v

f
i

plus the length of convoy i. This expression is uniformly upper bounded by

|V ′| + 2|V ′| = 3|V ′|. Thus, the schedule performs with cost less than or equal

to 3|V ′| and the answer to the DCRP is YES as well.

Now, assume that the answer to the PDDP question is NO. Let any schedule

for the corresponding DCRP problem be given. Let the path taken by the head

of convoy i from vs
i to v

f
i be called πi. Note that because the answer to the

PDDP question is NO, we must have two convoys, say i and j, such that πi and

πj share at least one vertex v′ ∈ V ′ in common. Note also that v′ will not be

the terminal vertex of any path because all convoys have distinct destinations.

Let this schedule run for |V ′| time units, and consider the state of the convoys

in the network. There are two cases to consider.

1. The vertex v′ is not occupied by any convoy at time t = |V ′|. Note

that because each convoy is of length 2|V ′|, each edge is of length 1, and

the maximum speed limit is 1, neither convoy i nor j can have already

completely passed by the vertex v′. Consider only convoy i: a lower bound

for the time that it would take for the rear of convoy i to make it to v
f
i is
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given by the distance from v′ to v
f
i in G′ (which is greater than or equal

to 1 because v′ 6= v
f
i ) plus the |V ′| time units that have already passed

by plus an additional 2|V ′| units to accommodate the entire length of the

convoy. This quantity is ≥ 3|V ′| + 1; thus, in this case, the answer to the

DCRP must be NO.

2. The vertex v′ is occupied by at least one convoy at time t = |V ′|. Assume

that vertex v′ is occupied by exactly one convoy at this time. Then by

the same reasoning as above, we know that at least one of convoy i or j

must not have reached v′; via the same calculations as above, we know

that there exists a convoy that has a lower bound of 3|V ′|+1 units of time

before its rear can reach the terminal vertex of its path. Thus, if only one

convoy is occupying v′, the answer to the DCRP is NO as well.

Finally, consider the possibility that v′ is occupied by at least two convoys

at time t = |V ′|. Choose any two of the intersecting convoys, say i and j.

At this point, we can note that v′ is either the initial or terminal vertex

of a transformed vertex from the original graph G.

Note that at least |V ′| ≥ 2 units of convoy length must remain “behind”

each of the intersecting convoys.

• If v′ is the terminal vertex v2, then we know that at least one unit

length of the trailing convoys must be intersecting on the edge v1 →

v2 and will continue to intersect completely along this edge for at

least one more unit of time after time t. Because C2 = 3|V ′|+1, this

will put the cost of the solution over 3|V ′| + 1.

• If v′ is the initial vertex v1, then we know that after one more time

unit, the edge v1 → v2 must contain both convoys and will continue

to do so for at least one more time unit afterwards because |V ′| ≥ 2.

Once again, because C2 = 3|V ′|+ 1, the cost of the solution must be

over 3|V ′| + 1.

In both cases, the answer to the DCRP is NO.
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2

3 Realistic Parameters for the Problem

In this section, we perform a literature review on the impact of vehicular speeds

given various types of disasters. These values are necessary to determine what

the edge weights of the network should be.

3.1 Weather Impact on Speed of Vehicles

Adverse weather conditions have a major impact on the operation of our nation’s

roads. The impact of weather conditions on highway traffic has been considered

an active area of research for many years (Agarwal et al. , 2005; Ibrahim &

Hall, 1994; Payer & Kuchenhoff, 2004; Pinelli et al. , 2004). Adverse weather

conditions such as snow, rain, and wind have been documented to negatively

impact traffic characteristics in a number of ways, including vehicular speed.

Many researchers have evaluated and quantified this impact and their research

findings are presented in the following paragraphs (Chin et al. , 2004; FHWA,

2004; Goodwin, 2004; Kyte et al. , 2001).

Goodwin (Goodwin, 2004) performed a study to evaluate the impact of

weather on arterial traffic flow. In this study, a number of weather events are

described along with their associated impact on traffic operations. These events

are rain, snow, sleet, hail, flooding, high wind, fog, smog, smoke, lighting, and

extreme temperature. These events have been documented to influence traffic

flow by reducing roadway capacity and speed of vehicles. Speed variability has

also been shown to increase as a result of these weather events. Furthermore, the

researcher conducted an extensive literature review on the impact of these events

on the speed of vehicles. This literature review revealed a speed reduction range

of 10% to 36% for various categories of weather events. A detailed description

of these weather events and their associated speed reduction values is listed in

Table 2.
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Weather condition Speed reduction (%)

Dry 0

Rain 10

Wet and snowing 13

Wet and slushy 25

Wheel path slush 30

Snowy and sticking 36

Figure 2: Weather impact (Goodwin (2002))

Weather condition Speed reduction (%)

Light rain 8

Heavy rain 17

Snow 13–40

High wind 14

Low visibility 15

Combination of snow, low visibility and high wind 30-38

Wet and slush pavement 25

Slushy wheel paths 30

Figure 3: Weather impact (FHWA 2004))

In a report published by the Federal Highway Administration (FHWA, 2004),

a number of factors were also mentioned to have high impact on the speed of

vehicles. These factors are rain, snow, wind, and low visibility. Their impact

was found to reduce speed by up to 38%. A detailed description of these impacts

and their associated reduction range is given in Table 3.

Chin et.al. (Chin et al. , 2004) performed a study to evaluate the temporary

losses of highway capacity and quantify their impact on performance. In their

study, they categorized highways into four categories: 1) urban freeways; 2)

rural freeways; 3) urban arterials and 4) rural arterials. They also identified six
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Weather condition Highway Type

Urban freeway Rural freeway Urban arterial Rural arterial

Light rain 10% 10% 10% 10%

Heavy rain 16% 25% 10% 10%

Light snow 15% 15% 13% 13%

Heavy snow 38% 38% 25% 25%

Fog 13% 13% 13% 13%

Ice 38% 38% 25% 25%

Figure 4: Weather impact (Chin et.al. (2004))

Weather condition Speed reduction (%)

Wet pavement surface 9.5

Snow 16.4

Wind >15 mi/h (24 km/h) 11.7

Visibility < .17 mi (0.28 km) 0.48 mi per .006 mi below 0.17 mi

Figure 5: Weather impact (Kyte et.al. 2001))

weather events of great impact on vehicular speed. These events are light rain,

heavy rain, light snow, heavy snow, fog, and ice. The results of this study are

shown in Table 4.

As can be noticed from Table 4, the impact of various weather events on

urban and rural arterials is exactly the same (i.e. same % of speed reduction).

The same observation is also true for urban and rural freeways, except for heavy

rain. Heavy rain was found to reduce the speed of vehicles by 16% and 25% on

urban and rural highways, respectively.

Kyte et.al. (Kyte et al. , 2001) performed a study to evaluate the effect of

weather on free-flow speed of vehicles. In this study a number of weather events

were considered: wet pavement surface, snow, wind, and visibility. The impact

of these weather events is shown in Table 5.
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Weather condition Speed reduction (%)

Light rain 8–10

Heavy rain 10–25

Light snow 13–16.4

Heavy snow 25–40

Ice 25–38

High wind 11.7–14

Low visibility/fog5 13–15

Wet and snowing 15

Wet and slushy 25

Wheel path slush 30

Snowy and sticking 36

Snow, low visibility and high wind 30–38

Snow, wet surface, low visibility and wind6 Speed = 100.2-16.4 snow-9.5 wet+77.3 vis-11.7 wind

Figure 6: Weather impact (summary)

3.2 Summary of Literature Review

The literature review reveals that there are a number of weather events that

negatively impact the speed of vehicles on highways. These events were classified

into eleven categories by different researchers. These categories are light rain,

heavy rain, light snow, heavy snow, wind, low visibility, wet and snowing, wet

and slushy, wheel path slush, snowy and sticking and combination of snow, low

visibility and high wind. Table 6 lists these events and their associated average

impact.

3.3 Road Weather Information Systems

Many states have invested in advanced technologies designed to monitor, report,

and forecast road related weather conditions (Boon & Cluett, 2002; FHWA,

2003; Decision, n.d.). Collectively, these technologies are referred to as Road
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Weather Information Systems (RWIS) (Boon & Cluett, 2002). Usually, deployed

RWIS components include roadside sensor stations, communication networks,

tailored weather forecasting services, advanced weather modeling, pavement

temperature modeling and prediction, and an Internet website for decision mak-

ing and traveler information (Boon & Cluett, 2002). Implementation of these

RWIS components serves primarily to enable the use of cost-effective control

practices that improve safety and the level of service provided to users. It

should be noted that the road condition and weather information is usually dis-

seminated to the public as a way of helping travelers make informed decisions

for safe and efficient travel.

The RWIS usually collect all relevant information using three types of sen-

sors. These are: 1) snow and ice sensors; 2) fog sensors and 3) storm sensors.

These different types of sensors provide information on water content, density of

fog, wind speed and direction, precipitation amount and rate, air temperature,

relative humidity and roadway surface conditions (Decision, n.d.). It should

be noted that these sensors collect and transmit data to a central processing

unit that is usually located in a highway maintenance facility. These central

processing units then communicate, collect, archive, and distribute the data.

4 Algorithmic Solutions to the Online Problem

By Theorem 1 in Section 2.3, we know that the CRP problem stated in Definition

5 is thought to be computationally intractable by the majority of computer

science researchers. In this section, we outline a few alternative possible methods

for attacking this problem despite its probable intractability.

Note that there is one relaxation that is immediately obvious. For example,

rather than demanding an optimal solution to the problem, one might ask only

for a solution that is approximately correct, say to within a certain predeter-

mined factor of optimal. In practical situations, as long as the cost is reasonably

bounded, the perfect solution is of secondary importance to its immediate im-

plementation. On this topic, there are several methods utilized in the field of
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practical artificial intelligence that can most likely be applied. These techniques

have implicit bonuses associated with them: As they are run, better and better

solutions are located in parameter space; we can stop the calculations at any

time with full knowledge of the best solution found thus far. In addition, they

are ideally suited for this reason for the online version of the problem. If the

parameters are altered in mid-calculation by an adversary (usually, nature), the

entire algorithm does not need to be restarted from the beginning.

4.1 Implementation

In order to test whether such an implementation is possible in practice, using the

values tabulated in Section 3, we imitated three convoy-routing scenarios with

various degrees of disaster intensities on randomly generated maps designed

to simulate large sections of a metropolitan area. There are thirty convoys

that need to be routed within a region of nine hundred city blocks with thirty

randomly generated bridges/tunnels. The epicenter for the disaster is in the

center of the city, and the convoys need to be routed around this region. Each

section of every street has some probability of being damaged by the disaster.

More specifically, we created 30 convoys; each has a randomly selected length

between 2 and 17. Many large cities are designed, for the most part, as grids

(e.g. New York City) with various tunnels and bridges. We start our graph

with a thirty-by-thirty grid; an example graph is illustrated in Figure 7. The

intersections of the grid are vertices in the graph, and each intersection has an

edge connected to its neighboring vertices. We add two extra vertices between

each adjacent intersection (see Figure 8), thus there are 4380 vertices and 10440

edges (or 5220 two-way streets) in the grid. Every edge is associated with a

random weight between 0.7 and 1.3. Recall that the theoretical maximum speed

for any convoy is 1 unit. Thus, it takes between 0.7 and 1.3 units of time for the

head of a convoy to traverse any given undamaged edge if it travels at maximum

speed. The bridges/tunnels are built by randomly adding an edge between two

vertices, and the weight of the bridges/tunnels is approximately the Euclidean
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Figure 7: This is a visualization of the imaginary city used as a test case. The

bridges/tunnels are randomly generated for each new problem instance. The

weight of each edge in the graph is chosen to be 1 plus or minus 30%, and the

weight of each tunnel is chosen to be approximately its Euclidean distance. Note

the size and location of the convoy origin area, the convoy destination area, and

the disaster epicenter.
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Figure 8: This picture illustrates the additional vertices that we form within

each “city block.” This is emphasized in the upper-left corner of Figure 7 as

well. Usually a city block will have many more than one “address” per block.

In addition to the block intersections, we chose to use the approximation that

there are two addresses per city block in order to balance this realistic fact with

computational feasibility. (Note that the number of addresses per city block is

a multiplicative factor in the number of edges in the network.) In a practical

situation, we must assume that it will make no difference if a convoy that is ten

blocks long arrives at an address that is only two doors away from its “real”

destination.
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distance between these two vertices. The starting vertex of each convoy is

randomly selected from the lower-left nine-by-nine corner, which accounts for

10 percent of the grid, and the destination vertex is randomly selected from the

upper-right nine-by-nine corner (10 percent) of the grid. The epicenter of the

disaster occurs at the center of the grid and covers an area of twelve-by-twelve

city blocks. A percentage of the streets within the epicenter are damaged,

and the rest of the grid sees a damage of one third of that of the epicenter.

This percentage is varied between the different scenarios. In this experiment,

3 problem instances are generated, and each has 25%, 50%, and 75% of street

damage respectively. To add damage to a given stretch of road, we randomly

select an edge and add a random number between 0 and 13 to its weight.

4.2 The “Original” Genetic Algorithm

Our goal is to find an approximately optimal solution to this problem instance

within a time frame that can realistically be called real-time in the context

of this problem. The cost of a given solution is computed via discrete-event

simulation.

We use a form of genetic algorithm to approximate the optimal solution.

To generate an initial solution, we used Dijkstra’s single-source shortest path

algorithm to find the shortest path for every convoy from their origin to their

destination, and each has an initial constant speed of 1 (the theoretical maxi-

mum). The initial population consists of 10 copies of the initial solution. For

each solution in the population, we randomly select 8 intersection events and

avoid them; this creates 8 new solutions.

The algorithm “avoids” intersection events in two different ways: (1) slowing

down a convoy so as to reach the point where the two convoys intersect just as

the other convoy has cleared it and (2) re-routing a convoy. When an intersection

occurs, the algorithm chooses one of these methods with probability 50% each.

1. If the algorithm chooses to slow down a convoy, the algorithm will slow

down the selected convoy from the vertex prior to the “collision” so that
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the head of the selected convoy reaches the event vertex just after the tail

of the other convoy leaves the collision point.

2. If the algorithm chooses to re-route a convoy, the vertex in the path of the

convoy prior to collision is chosen, and the selected convoy is re-routed

by finding the shortest path (using Dijkstra’s algorithm) from a vertex

adjacent to this point to the destination. Note that in the case where the

chosen vertex has out-degree two (i.e. the vertex is not at the intersection

of the grid), there cannot exist a valid re-routing: any re-route from that

vertex must send the back into itself because the only vertex adjacent to

the collision is back towards the convoy. In this case, the event is avoided

by slowing down the convoy; slowing down a convoy is always possible.

If a derived solution is better than any solution in the current population,

the worst solution in the population is replaced by the new solution. Thus,

the population always contains the top 10 solutions. The algorithm contin-

ues to discover better solutions and eliminate worse solutions until no obvious

improvement can be made.

4.3 Evolution of the Genetic Algorithm

Different strategies for dealing with event avoidance were attempted. There

exists an obvious solution for scheduling the convoys which we refer to as Al-

gorithm Obvious: let the convoys move one at a time; a convoy cannot depart

unless the previous convoy arrives at its destination. (Clearly, this is not the

optimal situation.) Originally, the genetic algorithm had an equal chance to

slow down or re-route a convoy as described above. Our first attempt had final

solution cost just slightly less than if we had run Algorithm Obvious. Upon

termination, there were still overlapping events, but the algorithm could not

derive a better solution by re-routing or slowing down. Our original algorithm

performed well on small problems but not on the problem as described in Section

4.1.
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Given that the original strategy failed to find a satisfactory solution to our

problem, we adjusted the algorithm in the following ways based on our reasoning

for why it did not perform well.

1. Instead of re-routing a convoy from the point of collision, we attempted

to find a re-route path from the last grid intersection the convoy passed;

thus, the algorithm avoids re-routing from an out-degree 2 vertex. Before

making this adjustment, it was observed that an unusually large number

of convoys were being slowed down rather than rerouted. The reason for

this is that a large proportion of the vertices in the graph have out-degree

2. Immediately switching to the slow-down option was not allowing the

algorithm to adequately search for potential re-routes. Note that a re-

route is now always possible, since a convoy can always be re-routed from

its starting point.

2. In the case of an edge intersection, instead of slowing down a convoy on the

edge where two convoys start to intersect, we had the algorithm randomly

chose a point to slow down from the convoy’s path prior to reaching the

offending edge. This way the convoy remains close to its starting point

with higher probability keeping clear of other convoys that may be trav-

eling along the same edges, and thus avoiding possible interactions with

other convoys.

3. We allowed the algorithm to favor slowing down over re-routing. The orig-

inal algorithm had equal chance to delay or detour the overlapping convoy,

but now, 2/3 of these convoys are slowed, and only 1/3 will be re-routed.

Because of the lack of short paths from the origin to the destination in

our problem, searching for a quicker re-route that avoids additional in-

tersections will not succeed much of the time. Our algorithm should not

have the “patience” to sift through too many failures, but it would be

imprudent to ignore the possibility of a successful re-route completely.

After this modification, the second attempt yielded better results. The final
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cost of the solution dropped orders of magnitude. However, we found that it

was possible to increase the performance one more time based on the following

observation: If we slow down a convoy in the middle of the grid, that convoy

will occupy a certain number of edges while it is “waiting” for the other convoy

to pass by the collision point. On the other hand, if the starting time for that

same convoy is delayed, as opposed to delaying the convoy while it is blocking up

roadways in the network, those otherwise occupied edges would then be available

for other convoys to travel or detour. Therefore, delaying the departure time for

some convoys is a promising strategy when only a few “short” paths from origin

to destination are available as in our case. For the third attempt, the algorithm

delays the start time of a convoy during a slow-down if the vertex selected for

slow-down happens to be the starting point of that convoy; the start time is

changed to a random value not exceeding the maximum amount of time it takes

a convoy to reach its destination. (In other words, we at most double the time

it takes to reach its destination if it traveled at maximum speed.) It is this final

solution for which we present our results below.

The final algorithm then is as follows.

1. Initialization

(a) Use Dijkstra’s algorithm to generate an initial solution

(b) Build the initial population by making 10 copies of the initial solution

2. Iteration

(a) For each solution in the population, generate 8 new solutions by

selecting 8 random events to avoid. The event avoidance can be

performed via two methods:

i. With probability 1/3, the event avoidance is accomplished via

re-routing a convoy, as described above.

ii. With probability 2/3, the event avoidance is accomplished via

slowing down a convoy.



ON THE FORMULATION OF AN EMERGENCY ROUTING PROBLEM 33

5 10 15 20 25 30
Iterations

100

200

300

400

500

Cost Ratio
30 Iterations of the Genetic
Algorithm: 25% Damage

5 10 15 20 25 30
Iterations

100

200

300

400

500

Cost Ratio
30 Iterations of the Genetic
Algorithm: 50% Damage

5 10 15 20 25 30
Iterations

100

200

300

400

500

600

Cost Ratio
30 Iterations of the Genetic
Algorithm: 75% Damage

Figure 9: These figures illustrate the results of the genetic algorithm computa-

tion. Note that after roughly 30 iterations, in each case the cost ratio is roughly

2, an extremely good result.
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A. Randomly select a vertex from the path of one of the convoys

prior to the intersection point.

B. If the selected vertex is the origin of the convoy, delay the

departure time of the convoy by adding a random number as

described above.

C. If the selected vertex is not the starting point, adjust the

speed of the convoy on the path, so that the head of the

convoy reaches the intersection immediately after the tail of

the other convoy.

iii. From the 10+8*10=90 solutions in the population, keep the top

10 solutions for the next iteration

Definition 7 One way to calculate a theoretical lower bound for the cost of any

solution is to calculate the longest travel time if all convoys take the shortest

route at maximum speed from each individual origin to destination assuming

that C1 = C2 = 0. We define the cost ratio of a given solution S to be the ratio

of the cost of solution S to the cost of the lower bound.

The cost ratio for this experiment up to 30 iterations is shown in Figure

9. For each problem instance we generated, our experiment showed that our

final algorithm found the best solution it could find in under 60 iterations,

and the final cost is less than twice the theoretical lower bound on average.

Moreover, in some cases, we are able to schedule every convoy from its origin

to its destination without any intersection events at all. Each simulation lasted

between 5-15 minutes, which, in terms of disaster routing, is close enough to

real-time to be acceptable for our purposes.

5 Future Work

Future work includes extending the algorithm to find better solutions more

efficiently. Currently, the algorithm terminates when no significant improvement

is made after a certain number of iterations or there are no more interactions to
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avoid. Advancing the convoys’ starting time or speeding up convoys may yield

better results. Also, instead of randomly picking up an event to avoid, selecting

an event that has relatively higher cost might lead to faster convergence.

Other relaxations to the CRP are also possible, perhaps by constraining the

C1, C2, or M parameters to lie within a certain range depending on the values

in G. However, we believe that studying the more general problem is more cost-

efficient than pouring resources into researching potentially minor subproblems.
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